使用双向链表解决约瑟夫环问题

问题描述:

N个人围成一圈,从第一个开始报数,第M个将被杀掉,最后剩下一个,其余人都将被杀掉。例如N=6,M=5,被杀掉的顺序是:5,4,6,2,3,1。

源码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#include <iostream>
using std::cout;
using std::cin;
using std::endl;

struct Node { //结点
int data; //数据
Node* pred; //前驱
Node* succ; //后继

};

Node* rear; //头指针
Node* head; //尾指针

int count = 0; //累计器

void InitLinkedList(int); //初始化链表

void DeleteNode(Node*); //删除链表的某个节点

int main() {
cout << "请输入总人数n,开始计数的人k(1为起点),被杀掉的次序m:";
int n, k, m;
cin >> n >> k >> m;
if (n <= k || n <= m) abort();
cout << "被杀的次序为:";
InitLinkedList(n);
Node* ptr = head;
while (--k)
ptr = ptr->succ;
while (count) {
int i = m;
while (--i)
ptr = ptr->succ;
cout << ptr->data << ' ';
Node* tmp = ptr;
ptr = ptr->succ;
DeleteNode(tmp);
}
}

void InitLinkedList(int n) {
if (n <= 0) return; //如果为0,直接返回
head = new Node; //分配第一个结点
head->succ = head; //前驱为本身
head->pred = head; //后继为本身
head->data = 1; //编号为1
rear = head; //尾指针指向这个节点
count++; //累加器+1
for (int i = 2; i <= n; i++) { //循环
Node* ptr = new Node; //分配第i个结点
ptr->data = i; //编号为i
ptr->succ = rear->succ; //新分配结点的后继为原来尾的后继
ptr->pred = rear; //前驱为原来的尾
rear->succ = ptr; //尾的后继为新分配结点
ptr->succ->pred = ptr; //新分配结点的后继的前驱为新分配结点
rear = ptr; //尾指针后移
count++; //累加器+1
}
}

void DeleteNode(Node* p) {
if (p == head) { //如果删除的为头节点
head = head->succ; //绕过头节点
rear->succ = head; //尾的后继为新头
head->pred = rear; //新头的前驱为尾
delete p; //释放原来的空间
count--; //累加器-1
}
else if (p == rear) { //同理
rear = rear->pred;
rear->succ = head;
head->pred = rear;
delete p;
count--;
}
else {
p->pred->succ = p->succ; //同理
p->succ->pred = p->pred;
delete p;
count--;
}
}
作者

Uchiha Kakashi

发布于

2019-03-23

更新于

2019-11-26

许可协议